Analogical Classification: A Rule-Based View

نویسندگان

  • Myriam Bounhas
  • Henri Prade
  • Gilles Richard
چکیده

Analogical proportion-based classification methods have been introduced a few years ago. They look in the training set for suitable triples of examples that are in an analogical proportion with the item to be classified, on a maximal set of attributes. This can be viewed as a lazy classification technique since, like k-nn algorithms, there is no static model built from the set of examples. The amazing results (at least in terms of accuracy) that have been obtained from such techniques are not easy to justify from a theoretical viewpoint. In this paper, we show that there exists an alternative method to build analogical proportionbased learners by statically building a set of inference rules during a preliminary training step. This gives birth to a new classification algorithm that deals with pairs rather than with triples of examples. Experiments on classical benchmarks of the UC Irvine repository are reported, showing that we get comparable results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analogical transfer in perceptual categorization.

Analogical transfer is the ability to transfer knowledge despite significant changes in the surface features of a problem. In categorization, analogical transfer occurs if a classification strategy learned with one set of stimuli can be transferred to a set of novel, perceptually distinct stimuli. Three experiments investigated analogical transfer in rule-based and information-integration categ...

متن کامل

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Learning by Analogy: A Classification Rule for Binary and Nominal Data

This paper deals with learning to classify by using an approximation of the analogical proportion between four objects. These objects are described by binary and nominal attributes. Firstly, the paper recalls what is an analogical proportion between four objects, then it introduces a measure called ”analogical dissimilarity”, reflecting how close four objects are from being in an analogical pro...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014